Amberif 2018
International Fair of Amber, Jewellery and Gemstones

International Symposium
Amber. Science and Art

Abstracts

Gdańsk, Poland
22-23 March 2018
This International Symposium was organised to celebrate the 25th Anniversary of the AMBERIF International Fair of Amber, Jewellery and Gemstones and the 20th Anniversary of the Museum of Amber Inclusions at the University of Gdańsk.
ORGANISERS
Gdańsk International Fair Co., Gdańsk, Poland
Gdańsk University of Technology, Faculty of Chemistry, Gdańsk, Poland
University of Gdańsk, Faculty of Biology, Laboratory of Evolutionary Entomology and Museum of Amber Inclusions, Gdańsk, Poland
University of Gdańsk, Faculty of History, Gdańsk, Poland
Adam Mickiewicz University in Poznań, Institute of Archaeology, Poznań, Poland
International Amber Association, Gdańsk, Poland

INTERNATIONAL ADVISORY COMMITTEE
Dr Faya Causey, Getty Research Institute, Los Angeles, CA, USA
Prof. Mitja Guštin, Institute for Mediterranean Heritage, University of Primorska, Slovenia
Prof. Sarjit Kaur, Amber Research Laboratory, Department of Chemistry, Vassar College, Poughkeepsie, NY, USA
Dr Rachel King, Curator of the Burrell Collection, Glasgow Museums, National Museums Scotland, UK
Prof. Barbara Kosmowska-Ceranowicz, Museum of the Earth in Warsaw, Polish Academy of Sciences, Poland
Prof. Joseph B. Lambert, Department of Chemistry, Trinity University, San Antonio, TX, USA
Prof. Vincent Perrichot, Géosciences, Université de Rennes 1, France
Prof. Bo Wang, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, China

SCIENTIFIC COMMITTEE
Prof. Barbara Kosmowska-Ceranowicz – Honorary Chair
Dr hab. inż. Ewa Wagner-Wysiecka – Scientific Director of Symposium
Prof. Janusz Czebreszuk
Prof. Jacek Szwedo
Dr Anna Sobecka

SCIENTIFIC PARTNERS
Palaeoentomological Section of the Polish Entomological Society
The Museum of the Earth in Warsaw, Polish Academy of Sciences
The Malbork Castle Museum
Museum of Gdańsk

ORGANISING COMMITTEE
Ewa Rachoń – Amberif Project Director
Dr Elżbieta Sontag, Dr inż. Natalia Łukasik, M.A. Mateusz Cwaliński, Michał Kosior
Agnieszka Uklejewska – Secretary of the Organizing Committee

Published by the Gdańsk International Fair Co. (MTG SA), Gdańsk, Poland, 2018

Foreword

For 25 years, AMBERIF has been gathering people of common passion: Baltic amber (=succinite). Since its first edition, AMBERIF has been accompanied by scientific seminars, which were initiated by Prof. Barbara Kosmowska-Ceranowicz and Wiesław Gierłowski. In its silver jubilee year 2018, the seminar is an International Symposium, organized under the supervision of AMBERIF Project Director Ewa Rachoń.

Science and art have been coming together from times immemorial. They are like a good marriage, supporting and complementing each other, providing creativity and inspiration, opening new perspectives and opportunities every day. Baltic amber, but also other fossil resins of the world, is a perfect example of a link between science and art. It is because succinite in a magical way simply attracts—not only those who just love the secret beauty of amber, but also scientists and artists.

During the two days of the Symposium (22-23 March 2018), we would like to present, in light of the latest scientific reports, the dynamic development and progress of the research areas related to amber in the field of natural sciences, exact sciences and humanities. Four thematic sessions, which will be chaired by members of the Scientific Committee of the Symposium, with the honorary Chair of the Symposium, Professor Barbara Kosmowska-Ceranowicz (Museum of the Earth in Warsaw, Polish Academy of Sciences), include lectures and poster sessions. Our invitation as keynote lecturers was accepted by: Prof. Faya Causey (Getty Research Institute, USA), Prof. Sarjit Kaur (Laboratory of Amber Research, Faculty of Chemistry, M. Vassar College, USA), Prof. Joseph B. Lambert (Faculty of Chemistry, University of Trinity, USA), Prof. Vincent Perrichot (Faculty of Earth Sciences, University of Rennes 1, France).

Session “Life traces in amber” chaired by Prof. Jacek Szwedo and Dr Elżbieta Sontag (Faculty of Biology, Laboratory of Evolutionary Entomology and Museum of Amber Inclusions, University of Gdańsk) is dedicated to the traces of ancient organisms and their activities, preserved in fossil resins. Its main topic is the inclusion of insects and other arthropods, plants, fungi and other organisms. This session is also a celebration of the 20th Anniversary of the Museum of Amber Inclusions at the University of Gdańsk.

Local and supra-regional traditions in the manufacture of amber objects among European societies of the Bronze and Iron Age is the leading topic of the session “Stylistics and processing technology of amber products in 3rd-1st millennium BC: local and interregional perspective” conducted by Prof. Janusz Czebreszuk and Mateusz Cwaliński (Institute of Archaeology, Adam Mickiewicz University in Poznań). The twelve oral communications presented in this session will be summarized in a special final discussion.

The latest achievements in research on amber properties with the use of modern research techniques and applications of these achievements form the main topic of the session “Highlights of amber properties investigations and current aspects of amber mining.” This part of the Symposium is also dedicated to very important current problems—including environmental ones—related to the geology and extraction of amber. This session is under the supervision of Dr Ewa Wagner-Wysiecka and Dr Natalia Łukasik (Faculty of Chemistry, Gdańsk University of Technology).

The amazing and captivating world of myths, toposes and their representations in amber artefacts is the subject of the session on “Myths, collections and conservation of amber,” led by Dr Anna Sobiecka (Faculty of History, University of Gdańsk).

Instead of a summary—

“Man is unique not because he does science, and he is unique not because he does art, but because science and art equally are expressions of his marvellous plasticity of mind” (Jacob Bronowski)

Ewa Wagner-Wysiecka
TABLE OF CONTENTS

LIFE TRACES IN AMBER

ORAL PRESENTATIONS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERRICHOT V. From Cretaceous to Eocene: an overview of the fossiliferous amber deposits from France KEYNOTE lecture</td>
<td>7</td>
</tr>
<tr>
<td>SONTAG E., SZWEDO J., SZADZIEWSKI R. 20 years of the Museum of Amber Inclusions at the University of Gdańsk</td>
<td>9</td>
</tr>
<tr>
<td>ROSS A.J. The remarkable palaeodiversity in Burmese amber</td>
<td>12</td>
</tr>
<tr>
<td>GARROUSTE R., CARBUCCIA B., NIL A. Insight in the Lowermost Eocene Oise amber: the collection of arthropod inclusions of the MNHN</td>
<td>17</td>
</tr>
<tr>
<td>XING L., MCKELLAR R.C. Recent discoveries of toothed birds and non-avian theropod remains in Cretaceous amber deposits from Myanmar</td>
<td>18</td>
</tr>
<tr>
<td>HOFFEINS C., HOFFEINS H.W., KUTZSCHER C., BLANK S.M. Jumping to more knowledge – a new flea in Baltic amber</td>
<td>19</td>
</tr>
<tr>
<td>PIEŁOWSKA A., SONTAG E., SZADZIEWSKI R. Haematophagous arthropods in Baltic amber</td>
<td>20</td>
</tr>
<tr>
<td>SIDORCHUK E. A family story told by amber inclusions (Acarina: Collohomanniidae)</td>
<td>21</td>
</tr>
<tr>
<td>WANG B., SZWEDO J. More than expected – disparity of the Hemiptera (Insecta) in the mid-Cretaceous Burmese amber</td>
<td>23</td>
</tr>
<tr>
<td>JIANG T., WANG B., SZWEDO J. The planthopper family Miramachridae (Hemiptera: Fulgoromorpha) in Burmese amber</td>
<td>26</td>
</tr>
<tr>
<td>BRYSZ A.M. New data on Achilidae (Hemiptera: Fulgoromorpha) from Myanmar amber</td>
<td>28</td>
</tr>
<tr>
<td>SZWEDO I., DROHOJOWSKA I., SIMON E., WEGIEREK P. Sternorrhyncha (Insecta: Hemiptera) from Burmese amber</td>
<td>29</td>
</tr>
<tr>
<td>JARZEMBOWSKI E.A, ZHENG D. Dragonflies in amber from the age of the dinosaurs</td>
<td>31</td>
</tr>
<tr>
<td>SOSZYŃSKA-MAJ A., KRZEMIŃSKI W., KOPEC K. Scorpionflies (Mecoptera) in Burmese amber</td>
<td>34</td>
</tr>
<tr>
<td>SKRZĘŚKA K., KRZEMIŃSKI W. Diversity of the family Tanyderidae in the Myanmar amber</td>
<td>36</td>
</tr>
<tr>
<td>ZAKRZEWSKA M., GIKA W. The Buchonomyiinae (Diptera: Chironomidae) from Cretaceous Burmese amber</td>
<td>37</td>
</tr>
<tr>
<td>BARANOV V., LAURINDO F. Revisiting mouthparts development in modern and fossil Chironomidae (Diptera)</td>
<td>39</td>
</tr>
<tr>
<td>ŻYŁA D. Dating fossils with molecules – innovative approach to determine the age of Baltic amber. Introduction to the project</td>
<td>40</td>
</tr>
</tbody>
</table>

POSTERS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARBUCCIA B., ROLLARD C., NIL A., GARROUSTE R. The Araneae of the Lowermost Eocene Oise amber: an unexpected palaeodiversity</td>
<td>42</td>
</tr>
<tr>
<td>JORDAN-STASLIO W., KRZEMIŃSKI W., KANIA I., MIAZGA N. Rhabdomastix Skuse, 1980 in Eocene Baltic amber (Diptera: Limoniidae)</td>
<td>43</td>
</tr>
<tr>
<td>KANIA I., WOJTON M., KRZEMIŃSKI W., WANG B. Anisopodidae Knab, 1912 (Diptera, Nematocera) in Cretaceous Burmese amber</td>
<td>44</td>
</tr>
<tr>
<td>KASYCZY-N. WEGIEREK P., DEPA L., TASSZAKOWSKI A. Invertebrates in contemporary, coniferous resins – an insight into the ecosystem?</td>
<td>45</td>
</tr>
<tr>
<td>KRZEMIŃSKI W., KOPEC K., SKRZĘŚKA K., SOSZYŃSKA-MAJ A., KANIA I. Diptera Nematocera from the Myanmar amber in the collection of the Natural History Museum ISEA PAS</td>
<td>47</td>
</tr>
<tr>
<td>PIELIŃSKA A. From the research of the Baltic amber flora</td>
<td>48</td>
</tr>
<tr>
<td>TSCHEF M., BOJARSKI B., GORCZAK M., PAWŁOWSKA J., SZEFCZAFIŃK K., WRZOSER M. The diversity of fossil fungi in Baltic amber</td>
<td>49</td>
</tr>
<tr>
<td>WOJTON M., KANIA I., KRZEMIŃSKI W. First Mycetobia Meigen, 1818 in Cretaceous Burmese amber (Diptera, Anisopodidae)</td>
<td>49</td>
</tr>
</tbody>
</table>

STYLISTICS AND PROCESSING TECHNOLOGY OF AMBER PRODUCTS IN 3RD-1ST MILLENNIUM BC: LOCAL AND INTERREGIONAL PERSPECTIVE

ORAL PRESENTATIONS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAUR S., STOUT E. Elucidation of origin, age and authenticity of ambers through chemical characterization KEYNOTE lecture</td>
<td>51</td>
</tr>
<tr>
<td>RAMSTAD M. Neolithic amber in Norway and social dynamics the in 3rd millennium BC in Scandinavia</td>
<td>52</td>
</tr>
<tr>
<td>IRŠENAS M. Juodkrantė (Schwarzort) amber figurines: between north and south</td>
<td>52</td>
</tr>
<tr>
<td>MANASTERSKI D., KWAJKOWSKA K. Late Neolithic amber beads from Supraśl in the light of multi-faceted analysis</td>
<td>57</td>
</tr>
<tr>
<td>BUTRIMAS A., KROD M., OSTRAUSKIEI D. Amber typology of Rzucow and West Lithuanian Late Neolithic settlements</td>
<td>61</td>
</tr>
<tr>
<td>GARIN C Typology and technology: the example of the amber productions in France during the Neolithic and Protohistory</td>
<td>65</td>
</tr>
<tr>
<td>DRENTH E. Late prehistoric amber from the Netherlands</td>
<td>65</td>
</tr>
<tr>
<td>LIŠTINA M. Amber finds in the Bronze Age of Serbia: distribution, provenance and social significance</td>
<td>66</td>
</tr>
<tr>
<td>CWAJΛSKI M. One step beyond: towards understanding amber consumption during the Bronze and Early Iron Age in Western and Central Balkans</td>
<td>67</td>
</tr>
<tr>
<td>NEGRONI CATACCIO N., GALLO V. Analysis of a few amber artifacts as chronological and cultural indicators during pre- and protohistory in Europe</td>
<td>67</td>
</tr>
<tr>
<td>HÖHENSTEIN U.T., BELLENTANI P., PAVAN F. Amber processing at the site of Campestrin (Grignano Polesine, Rovigo, northeastern Italy)</td>
<td>70</td>
</tr>
<tr>
<td>DMITROVIK V. Typological frame of the amber from Atenica and its relation to the neighboring area</td>
<td>71</td>
</tr>
<tr>
<td>STIPANIC P. Amber in first millennium BC from Novo Mesto, Slovenia</td>
<td>72</td>
</tr>
</tbody>
</table>

POSTERS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PESKA J., KUCERA L., BEDNAR P. Ancient amber in Moravia</td>
<td>75</td>
</tr>
</tbody>
</table>
HIGHLIGHTS OF AMBER PROPERTIES INVESTIGATIONS AND CURRENT ASPECTS OF AMBER MINING

ORAL PRESENTATIONS

LAMBERT J.B. Molecular analysis of amber and related fossilized materials by nuclear magnetic resonance spectroscopy KEYNOTE lecture ...77

VAN DER WERF I.D. Recent developments in amber investigation: succinite vs. simetite ...78

SHASHOUYA Y. Investigating the degradation of Baltic amber ..81

ŁYŻDŻA-KOPCZYŃSKA B., MENDYK A. Versatile spectroscopic approach in the investigation of cultural heritage objects86

MATUSZEWSKA A. Physicochemical transformations of amber illustrated by changes in the oxygen-groups range of infrared spectra ..88

KUCERA Ł., PESKA J., BEDNAR P. Utilization of mass spectrometry for chemical analysis of amber for distinction of its origin in various Baltic regions. ..92

KACZMARCZYK I. Baltic amber as a potential source of active agents against selected microorganisms ..92

KASIŃSKI J.R., SŁODKOWSKA B., KRAMARSKA R. Amber-bearing sediments of the Polish-Ukrainian border zone stratigraphic correlation ...94

MATSUI V., NAUMENKO U., REMEZOVA O., OKHOLINA T., VASYLENKO S., YAREMENKO O. The prognosis of amber-succinite deposits of different age in Ukraine and their prospects of development ...99

REMEZOV A., MATSUI V., VASYLENKO S., KOMLIEV O. Geocological aspects of amber mining in Ukraine ..104

BELichenko O., WAGNER-WYSIECKA E. Geological production characteristic of amber deposits and finds in Ukraine. Perspectives of identification by mid-infrared spectroscopy ..108

POSTERS

BELichenko O., LADZHUN Y., TATARINTSEVA K. Gemological research of the «treated-color» amber ..113

CAI Y., BAO T. The prosperity of Tengchong Amber Market and related industries ..114

CZYRNYAK A., ŁYŻDŻA-KOPCZYŃSKA B. Micro IR and Raman spectroscopy as operative techniques in the various fossilised resins screening ..115

FRIEDMAN V., LAMBERT J.B., BUGARIN A., KAUR S., STOUT E. Amber in Texas ..117

KLukiWOwicz-KOSIOR A., KOSIOR M., WAGNER-WYSIECKA E. Amber Laboratory of International Amber Association - current research activity and perspectives ..118

KOMLIEV O., REMEZOV A. Lacustrine and paludal complexes of Ukraine as amber-bearing objects ..121

KOSMOWSKA-CEBANOWICZ B., PIELIŃSKA A. Infrared spectra of amber and other resins – results of research by Vladas Katinas, 1988 ..124

KRYNITSKA M., KOVELYCH L. The researches of conditions of productive thickness forming of the southern part of Volodymyrets amber-bearing district ..134

SKRZYPEK K., KOMOSA Z., MACIOLEK U., SØFJØ-CHMIEL W. GAZDA L., MENDYK E. Spectral and microscopic study of Lublin amber ..138

SKRZYPEK K., KOMOSA Z., MACIOLEK U., SØFJØ-CHMIEL W., MENDYK E. The study of natural resins using AFM microscopy ..140

MYTHS, COLLECTIONS AND CONSERVATION OF AMBER

ORAL PRESENTATIONS

CAUSEY F. Amber and Africa KEYNOTE lecture ..143

GUŚTIN M. Aquileia – the centre of amber production in Roman Times ..145

POLYAKOVA I.A. Collecting and displaying amber in culture and everyday life of Prussia during 16th century ..146

KING R. Sisterly Devotion Solidified: Owning the Tears of the Heliades in Renaissance Europe ..147

TRUSTED M.H. Baltic Ambers in Britain: a rich and diverse heritage ..152

SOBECKA A. A new interpretation of the mythological iconography of the Malbork Casket ..153

BAUZIŠTĖ-TALAKIENĖ S. Amber artefacts of the Palanga Amber Museum Collection. Mythological parallels ..156

PAWEŁGA E. Amber in myths, legends and folk tales. ..160

KRIEGSEISEN J. Amber in the Sicilian fine arts and crafts. ..161

ATTULA A. Amber. Reflections on the “political myth“ of a fossil resin – The last exhibition in 1943 ..163

JABLONSKI G. The Fall of Phaeton – myth, legend or secret knowledge. An artistic hypothesis ..165

POSTERS

ADAMOWICZ R. Rebuilding and adaptation of the Great Mill in Gdańsk for the needs of a new premises of the Amber Museum ..166

RATUSZNA J. Conservation of the 17th century amber altar from the Malbork Castle Museum collection ..166

SADO A. Amber myths – today ..167
Sternorrhyncha (Insecta: Hemiptera) from Burmese amber

JACEK SZWEDO1, JOWITA DROHOJOWSKA2, EWA SIMON2, PIOTR WĘGIEREK2

1Laboratory of Evolutionary Entomology and Museum of Amber Inclusions, Department of Invertebrate Zoology and Parasitology, University of Gdańsk, Wita Stwosz 59, PL80-308 Gdańsk, Poland, jacek.szwedo@biol.ug.edu.pl
2Department of Zoology, University of Silesia, Bankowa 9, PL40-007 Katowice, Poland, jowita.drohojowska@us.edu.pl, ewa.simon@us.edu.pl, piotr.wegierek@us.edu.pl

Sternorrhyncha bugs (Hemiptera: Sternorrhyncha) are tiny opophagous (sucking phytophagous) insects, recently distributed worldwide. This group covers several lineages still present as aphids (Aphidomorpha), scale insects (Coccidomorpha), whiteflies (Aleyrodomorpha) and psyllids (Psylliformes), as well as extinct Naibiomorpha and Pincombeomorpha (Szwedo 2018). The geological history of the group could be traced back to Permian, but their records are not so numerous as for euhemipteran lineages (Fulgoromorpha, Cicadomorpha, Coleorrhyncha and Heteroptera). Fossilised resins are perfect preservative for these minute creatures, and since the early Cretaceous, the fossil record of aphids, scale insects and aleyrodids is quite rich, while surprisingly, not so rich for protopsyllidiids and psylloids (Psylliformes). Similar image is to be observed among sternorrhynchan inclusions in mid-Cretaceous Burmese amber (Ross 2018).

Up to the end of 20th century, Burmese amber, mineralogically named as burmite by Gdańsk pharmacist Otto Helm (Helm 1892, 1893), was regarded as one of the rare and weakly known fossil resins. Resurgence in the study of this amber and its inclusions over the past two decades resulted in hundreds of papers. The main deposit in which the Burmese amber is exploited is area near Noije Bum Hill, in Hukawng Valley, Kachin State of northern part of Burma (Kania et al. 2015; Thu and Zaw 2017). These deposits were investigated and dated in detail by Cruickshank and Ko (2003) and Shi et al. (2012), which currently date the deposit of 98.8 ± 0.63 Ma. However, slightly older, late Aptian age of amber was recently postulated (Zheng et al. 2018), due to fact, that the amber shows evidence of redeposition (Grimaldi and Ross 2017; Smith and Ross 2018).

Scale insects are the best known so far group of insects from Burmese amber. To date 14 species (4 of incertae sedis position) were described from 7 families. The first descriptions of scale insects from families Burmacoccidae and Albicoccidae were presented by Koteja (2004). Families and representatives of other families – Ortheziidae, Coccidae, Koziaridae, Pseudococcidae and Weitschatidae were presented by Vea and Grimaldi (2012, 2015) and Wang et al. (2015), the latter paper with the first report on brood care preserved in Burmese amber. Numerous inclusions representing Ortheziidae are under elaboration, and the first male from the family Monophlebidae.

The second group quite well recognised among inclusions in burmite is Aphidomorpha. The first aphids from Burmese amber were presented by Poinar and Brown (2005). Two families Parvaverrucosidae and Burmitaphididae were established, both of them now extinct (Szwedo 2018). Later another family – Isolitaphididae was described by Poinar (2017), but it recently proposed to be synonymised under Juraphididae (Liu et al. 2018). Number of papers with description of new genera and species in families already known were also presented recently (Wegierek et al. 2017, Poinar 2018, Liu et al. 2018). To the date 7 species of 5 extinct families of aphids are reported.

The other sternorrhynchan groups entombed as inclusions in burmite, are known extremely weakly. Two species of whiteflies were described, first by Cockerell (1919) and the other one by Shcherbakov (2000). Taxonomically, whiteflies are very difficult group to study, often being not correctly recognised as inclusions, which hampering the studies of these insects from Burmese amber. The group was well represented and
diversified during the Cretaceous (Drohojowska and Szwedo 2015) and number of new species is going to be described from Burmese amber in nearest future.

Psylliformes from Burmese amber are represented exclusively by single Protopsyllidiidae species. This group was revealed as sister to all Sternorrhyncha by Grimaldi (2003). Liadopsyllidae were reported from Lebanese and New Jersey amber (Ouvrard et al. 2010), however, not found yet among Burmese amber inclusions. Recent investigations (Drohojowska 2015) put them as a sister group in relation to Aleyrodomorpha and Psylloidea. This group need more attention and detailed survey, more specimens, well preserved and correctly described, can put a light on the relationships of these insects. The great challenge is to find true Psylloidea in Burmese amber, as they enter the fossil record in the Palaeogene, and nothing is known on early stages of their evolution and morphological disparity, which probably started at the times of Burmese amber formation.

One more group, of particular Sternorrhyncha is now under detailed investigation, but their taxonomic and phylogenetic position needs further investigations and will be presented soon.

To sum up, Sternorrhyncha inclusions of mid-Cretaceous Burmese amber show wide taxonomic diversity and broad range of morphological disparity, owing to place them at their own groups of familial ranks. These insects, despite of tiny size, are of great interest and of great importance to reconstruct the biota of Burmese amber and evolutionary scenarios for formation and extinction of lineages, formation of modern faunas.

Acknowledgements

This report result from Chinese Academy of Science President’s Fellowship Initiative Grant No. 2017VBA0024 awarded to JS.

References

Dragonflies in amber from the age of the dinosaurs

EDMUND A. Jarzembowski¹, DARAN ZHENG²

¹State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China and Department of Earth Sciences, The Natural History Museum, London SW7 5BD, UK, jarzembowski2@live.co.uk

²State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China and Department of Earth Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China, daranzheng@gmail.com

Odonatans (dragonflies and damselflies; dragonflies in the broad sense) are rare as amber inclusions, but quite diverse in mid-Cretaceous Burmese amber (circa 100 million years old) with 27 species in 22 genera (Figure 1) representing 13 families: this is the most abundant dragonfly assemblage so far discovered as amber inclusions.

Fig. 1. Histogram chart showing number of odonatan specimens vs. genus in Burmese amber.
ORGANISERS

Gdańsk International Fair Co.

Gdańsk University of Technology, Faculty of Chemistry

University of Gdańsk, Faculty of Biology, Laboratory of Evolutionary Entomology and Museum of Amber Inclusions

University of Gdańsk, Faculty of History

Adam Mickiewicz University in Poznań, Institute of Archaeology

International Amber Association

SCIENTIFIC PARTNERS

Palaeoentomological Section of the Polish Entomological Society

The Museum of the Earth in Warsaw, Polish Academy of Sciences

The Malbork Castle Museum

Museum of Gdansk

INTERNATIONAL SYMPOSIUM
“AMBER. SCIENCE AND ART”

Abstracts Publisher:
Gdańsk International Fair Co.
Amberif 2018